HCN4 pacemaker channels attenuate the parasympathetic response and stabilize the spontaneous firing of the sinoatrial node

نویسندگان

  • Yuko Kozasa
  • Noriyuki Nakashima
  • Masayuki Ito
  • Taisuke Ishikawa
  • Hiroki Kimoto
  • Kazuo Ushijima
  • Naomasa Makita
  • Makoto Takano
چکیده

KEY POINTS The contribution of HCN4 pacemaker channels in the autonomic regulation of the sino-atrial node (SAN) has been a matter of debate. The transgenic overexpression of HCN4 did not induce tachycardia, but reduced heart rate variability, while the conditional knockdown of HCN4 gave rise to sinus arrhythmia. The response of the SAN to β-adrenergic stimulation was not affected by overexpression or knockdown of HCN4 channels. When HCN4 channels were knocked down, the parasympathetic response examined by cervical vagus nerve stimulation (CVNS) was enhanced; the CVNS induced complete sinus pause. The overexpression of HCN4 attenuated bradycardia induced by CVNS only during β-adrenergic stimulation. We concluded that HCN4 pacemaker channels stabilize the spontaneous firing by attenuating the parasympathetic response of the SAN. ABSTRACT The heart rate is dynamically controlled by the sympathetic and parasympathetic nervous systems that regulate the sinoatrial node (SAN). HCN4 pacemaker channels are the well-known causative molecule of congenital sick sinus syndrome. Although HCN4 channels are activated by cAMP, the sympathetic response of the SAN was preserved in patients carrying loss-of-function mutations of the HCN4 gene. In order to clarify the contribution of HCN4 channels in the autonomic regulation of the SAN, we developed novel gain-of-function mutant mice in which the expression level of HCN4 channels could be reversibly changed from zero to ∼3 times that in wild-type mice, using tetracycline transactivator and the tetracycline responsive element. We recorded telemetric ECGs in freely moving conscious mice and analysed the heart rate variability. We also evaluated the response of the SAN to cervical vagus nerve stimulation (CVNS). The conditional overexpression of HCN4 did not induce tachycardia, but reduced heart rate variability. The HCN4 overexpression also attenuated bradycardia induced by the CVNS only during the β-adrenergic stimulation. In contrast, the knockdown of HCN4 gave rise to sinus arrhythmia, and enhanced the parasympathetic response; complete sinus pause was induced by the CVNS. In vitro, we compared the effects of acetylcholine on the spontaneous action potentials of single pacemaker cells, and found that similar phenotypic changes were induced by genetic manipulation of HCN4 expression both in the presence and absence of β-adrenergic stimulation. Our study suggests that HCN4 channels attenuate the vagal response of the SAN, and thereby stabilize the spontaneous firing of the SAN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Hyperpolarization-Activiated Current “if ” on the Rate of Spontaneous Activity and Cycle Length before and after Cutting of Atrial Muscle away from Intact Sinoatrial Node of Rabbit

It has been shown that the hyperpolarization-activated current “if” that is blocked by 2 mM Cs+ plays a minor role on pacemaker activity of the center and a major role on activity of the periphery of rabbit intact sino-atrial node. On the other hand some investigations showed that if the atrial muscle, surrounding the sino-atrial node, is cut away there is a shift in leading pacemaker site from...

متن کامل

Berberine attenuates spontaneous action potentials in sinoatrial node cells and the currents of human HCN4 channels expressed in Xenopus laevis oocytes.

The present study investigated the electropharmacological effects of a traditional Chinese herbal drug, berberine, on the spontaneous activity of sinoatrial nodes (SANs) of the rabbit heart and on human hyperpolarization-activated cyclic nucleotide-gated 4 (hHCN4) channels, which are heterologously expressed in xenopus oocytes, and which contribute to pacemaker currents (Ifs). A standard microe...

متن کامل

Age-related pacemaker deterioration is due to impaired intracellular and membrane mechanisms: Insights from numerical modeling

Age-related deterioration of pacemaker function has been documented in mammals, including humans. In aged isolated sinoatrial node tissues and cells, reduction in the spontaneous action potential (AP) firing rate was associated with deterioration of intracellular and membrane mechanisms; however, their relative contribution to age-associated deficient pacemaker function is not known. Interestin...

متن کامل

A caveolin-binding domain in the HCN4 channels mediates functional interaction with caveolin proteins.

Pacemaker (HCN) channels have a key role in the generation and modulation of spontaneous activity of sinoatrial node myocytes. Previous work has shown that compartmentation of HCN4 pacemaker channels within caveolae regulates important functions, but the molecular mechanism responsible is still unknown. HCN channels have a conserved caveolin-binding domain (CBD) composed of three aromatic amino...

متن کامل

INVITED REVIEW HCN-related channelopathies

HCN channels are the molecular subunits of native funny (f-) channels of cardiac pacemaker cells and neurons. Although funny channels were first functionally described in cardiac cells in the late 1970s, cloning of HCN channels, of which four subunits are known today (HCN1-4), had to wait some 20 years to be accomplished, which delayed the investigation of HCN-related channelopathies. In cardia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 596  شماره 

صفحات  -

تاریخ انتشار 2018